DOI: http://dx.doi.org/10.18782/2320-7051.6752

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **6** (5): 631-636 (2018)

Research Article

Stability Analysis in Hedge Lucerne (*Desmanthus virgatus* (L.) Willd) for Yield and Quality

Arun Chacko^{1*}, Mareen Abraham² and Shahiba A.M.¹

¹M.Sc. Plant Breeding and Genetics, Department of Plant Breeding and Genetics, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala- 695522, India,

²Professor and Officer i/c, AICRP on Forage Crops and Utilization, College of Agriculture, Vellayani,

Thiruvananthapuram, Kerala- 695522, India

*Corresponding Author E-mail: arun7joseph@gmail.com

Received: 29.07.2018 | Revised: 27.08.2018 | Accepted: 6.09.2018

ABSTRACT

Eight hedge lucerne genotypes were evaluated over four locations for analyzing stability for yield and quality. As the G x E interactions were significant for all the characters, further analysis was done for estimating the stability parameters according to Eberhart and Russell model (1966). The genotype T_1 (IC 345276) was stable over all locations for the characters green fodder yield, dry matter production and crude fibre. The genotype T_4 (IC 261839) and genotype T_7 (TNDV 1) was stable for the character crude protein across the locations. T_1 (IC 345276), T_4 (IC 261839), T_6 (IC 421199) and T_7 (TNDV 1) were stable over the four different locations. The genotypes T_2 (IC 343710) and T_8 (Thumburmuzhi local) showed stable performance under favourable environments viz., College of Agriculture, Vellayani and Regional Agricultural Research Station, Ambalavayal, Wayanad, while the genotype T_5 (IC 90934) was suitable for unfavourable environment.

Key words: G x E interaction, Stability analysis, Hedge lucerne

INTRODUCTION

Desmanthus virgatus commonly known as hedge lucerne is a perennial shrub legume belonging to the family Fabaceae and subfamily Mimosoideae. It is a native of tropics and subtropics of new world. The fodder can be safely fed to ruminants and nonruminants as it is palatable, aggressive, persistent and tolerant to grazing. It contains high condensed tannins and is devoid of toxicants like mimosine. Hedge lucerne is a forage legume which is preferred by cattle for its palatable green fodder and adequate amount of crude protein². Comparative evaluation of chemical composition (dry matter percentage, crude protein, calcium and phosphorous) of hedge lucerne with other tropical and subtropical forage legumes reveal it to be a nutritious feed⁴. The pithy stem of the fodder makes it easier to harvest and frequent cuts can be taken. Hedge lucerne is observed as potential fodder legume that can substitute leucaena for ruminant feed due to its versatile nature.

Cite this article: Chacko, A., Abraham, M. and Shahiba A.M., Stability Analysis in Hedge Lucerne (*Desmanthus virgatus* (L.) Willd) for Yield and Quality, *Int. J. Pure App. Biosci.* **6(5)**: 631-636 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6752

Chacko *et al*

ISSN: 2320 - 7051

Many fodder crops are under-utilized and their cultivation is reduced due to the fluctuant performance of diverse varieties. Being a fodder promising legume with ample advantages, hedge lucerne demands genetic improvement in terms of productivity. Information on adaptability and stability with regard to performance of genotypes can be drawn from the analysis of interaction of genotypes with locations and other agroecological conditions. In this perspective, the present investigation was conducted across four locations in Kerala to study the genotype x environment interaction in hedge lucerne for yield and quality.

MATERIAL AND METHODS

Eight hedge lucerne genotypes were evaluated at the Department of Plant Breeding and Genetics, College of Agriculture, Vellavani. Randomized block design with eight treatments and four replication was followed across the four locations in Kerala viz., College of Agriculture, Vellayani, Krishi Vigyan Kendra, Kollam, College of Horticulture, Thrissur and Regional Agricultural Research Station, Ambalavayal . The eight treatments were the accessions namely, T₁ (IC 345276), T₂ (IC 343710), T₃ (IC 89910), T₄ (IC 261839), T₅ (IC 90934), T₆ (IC 421199), T₇ (TNDV 1) and T_8 (Thumburmuzhi local). Seeds were sown in continuous line and row spacing of 50 cm. Yield and quality attributes viz., green fodder yield, dry matter production, crude protein and crude fibre were observed for the four harvests. The Eberhart and Russell model was used to analyze the data.

RESULTS AND DISCUSSION

The analysis of variance showed significant differences among the eight hedge lucerne genotypes for yield and quality characters studied across four environments (Table 1). The pooled analysis of variance revealed that for the genotypes, $G \ge 1$ interactions was significant for all the characters studied. As the $G \ge 1$ interactions were significant for all the characters, further analysis was done for estimating the stability parameters (Table 2).

The total sum of squares is partitioned into genotypes, Environments + (Genotype x Environment) and pooled error in the ANOVA. The mean squares due to E+ (G x E) were significant for the characters green fodder yield, dry matter production, crude protein and crude fibre content prioritizing the presence of G x E interaction for these traits. The mean sum of squares due to genotype was significant for the characters under study (Table 3). The sum of squares due to E+ (G x E) was further partitioned into that of Environment (Linear), Genotype x Environment linear and pooled deviation The linear component of (Table 3). Environment was significant for the characters like green fodder yield, dry matter production, crude protein and crude fibre content. The variation due to G x E (linear) were significant for the characters green fodder yield and dry fodder yield. The non linear component and pooled deviation were significant for the character dry matter production indicating the importance of both linear and non linear components. Similar findings were also reported by Palathingal⁷ in rice, Bikash et al.¹ in pearl millet, Preeti et *al.*¹⁰ in wheat, Mehraj *et al.*⁵, in oats and Patil *et al.*⁸, in okra. It was found that Vellayani was favourable for all of the characters whereas Thrissur was unfavourable for all the

calculated (Table 4). Eberhart and Russell model, considered three stability parameters like (i) performance (μ), regression mean (ii) coefficient (b_i) and (iii) deviation from regression (S^{2}_{di}). Linear component of G x E interaction is measured by using b_i value and also gives an idea about response of genotype. G x E interaction of unpredictable type (*i.e.*, predictable or unpredictable type) is measured from S^{2}_{di} value.

characters based on the environmental indices

The result interpretation of present study was done by using the parameters like regression coefficient, mean value and deviation from regression for stability. Once the genotypes were found to be stable based on non-significant deviation from regression $(S^2_{di}=0)$, then the type of stability was based on

Chacko *et al*

regression coefficient and mean value. If b_i is equal to unity, a genotype is considered as stable or has the same performance in all the environment, if b_i is more than unity, it is considered to have less than average stability or good performance in favourable environments and if b_i is less than unity, it is suggested to have above average stability or good performance under poor environments.

Mean performance and stability parameters for yield and quality traits in hedge lucerne over four locations (Table 5) :

Green fodder yield

The green fodder yield varied from 90.45g (T_3) to 115.42g (T_8) . The genotype T_1 had coefficient near unity regression with minimum non-significant deviation from regression, which specifies that the genotype was stable across the environment. The genotypes T_4 and T_8 showed more than one regression coefficient with non-significant deviation from regression, which indicates the high responsiveness of these genotypes for rich environment. The variable stability parameters were reported in green fodder yield by Nanavati⁶. in forage maize and Mehraj et $al.^5$ in oats.

Dry matter production

The dry matter production ranged from 40.62g (T₆) to 28.89g (T₃). The genotype T₁ (μ =39.93, b_i=0.97, S²_{di} = 0.09) was identified as stable genotype with unit regression coefficient and minimum non-significant regression from deviation. The genotype T₆ (μ =40.62, b_i=1.34, S²_{di} = 0.47) and T₈ (μ =40.04, b_i=1.25, S²_{di} = 0.49) were stable for rich environment. They had more than one regression coefficient and non-significant deviation from regression. The same findings for variation in stability

parameters was observed by Preeti *et al.*¹⁰ in wheat.

Crude protein content

The crude protein content varied from 24.39% (T_8) to 13.12% (T_4) in the present study. The genotypes T_4 (µ=13.12, b_i=0.97, $S^2_{di} = 0.01$) and T_8 (µ=24.39, b_i=0.91, S^2_{di} = -0.06) recoded high mean, near unit regression coefficient and non- significant deviation from regression for this trait. The genotype T_1 showed more than one regression coefficient and non-significant deviation from regression and was identified for rich environment. The genotype T_5 $(\mu = 13.91, b_i = 0.69,$ $S^{2}_{di} = 0.02$) exhibited less than unit value of regression and non-significant deviation from regression and hence the genotype was suitable for poor environment. Comparable findings for the variable stability parameters for protein content was reported by Saeed et al.11 in sorghum, Peterson et al⁹. in wheat, Shi et al.¹² in rice, Gurmu *et al.*³ in soybean.

Crude fibre content

The highest crude fibre content was recorded for the genotype T_8 (29.95%) and the lowest for the genotype T_2 (22.71%). The genotypes T_1 (µ=23.35, b_i =0.97, $S_{di}^2 = 0.098$), T₅ $(\mu = 28.21, b_i = 0.96, S_{di}^2 = 0.054)$ and T_7 $S_{di}^{2} = -0.027$) showed $(\mu = 27.44, b_i = 1.09,$ high mean, near unit regression and minimum non-significant deviation from regression. These genotypes hence were identified as stable across environment. The genotype T_2 $(\mu = 22.71, b_i = 1.26, S_{di}^2 = 0.004)$ was identified for rich environment based on stability T_4 parameters. The genotype showed regression coefficient less than one with nonsignificant deviation from regression, which was stable for unfavourable environments.

Table 1.1. Location-1 (COA, Venayani)									
Source of variation	df	Green fodder yield	Dry fodder yield	Crude protein	Crude fibre				
Replication	3	37.45	1.51	3.07	2.36				
Genotypes	7	340.78**	48.42**	84.53**	28.79**				
Error	21	8.66	0.33	0.26	1.01				

 Table 1. Analysis of variance (mean square) for individual locations

 Table 1.1. Location-I (COA, Vellayani)

Int. J. Pure App. Biosci. **6** (**5**): 631-636 (2018) Table 1.2. Location-II (KVK, Kottarakkara)

Source of variation	df	Green fodder yield	Dry matter production	Crude protein	Crude fibre
Replication	3	21.81	0.03	0.34	2.99
Genotypes	7	259.97^{**}	120.02**	76.98**	34.25**
Error	21	19.17	0.15	0.26	0.57

** Significant at 1%, * Significant at 5%

				,		
Source of variation	df	Green fodder yield	Dry matter production	Crude protein	Crude fibre	
Replication	3	8.52	0.27	0.24	0.16	
Genotypes 7		398.24**	93.07**	81.96**	26.65**	
Error	21	9.27	0.15	0.13	0.11	

Table 1.3. Location-III (COH, Thrissur)

Table 1.4. Location-IV (RARS, Ambalavayal)

Source of variation	df	Green fodder yield	Dry matter production	Crude protein	Crude fibre	
Replication	3	2.41	1.68	0.47	0.15	
Genotypes	7	308.83**	84.41**	90.13**	27.71**	
Error 21		8.72	0.45	0.35	0.33	

^{**} Significant at 1%, * Significant at 5%

 Table 2. Pooled Analysis of Variance (mean square) for different quantitative traits of hedge lucerne over four locations

Source of variation	df	Green fodder yield	Dry matter production	Crude protein	Crude fibre
Genotypes	7	1145.58**	357.00**	331.14**	114.93**
Environment	3	249.09**	152.39**	56.74**	51.39**
G x E interaction	21	54.08**	6.43**	0.82^{**}	0.82^{**}
Error	96	12.21	0.25	0.35	0.62

** Significant at 1%, * Significant at 5%

Table 3. Analysis of Variance (mean square) for mean data of different quantitative traits of hedge lucerne over	er
four locations	

Source of variations	df	Green fodder yield	Dry matter production	Crude protein	Crude fibre				
Genotypes	7	286.39**	89.25**	82.78**	28.73**				
E+ (G x E)	24	19.61*	6.17**	1.95**	1.79^{**}				
Environments	3	62.27**	38.09**	14.18**	12.84**				
Environments (Lin)	1	186.82**	114.29**	42.55**	38.54**				
G x E(Lin)	7	32.80**	2.15	0.27	0.38				
Pooled deviation	16	3.39	1.17^{**}	0.15	0.10				
Pooled error 96		3.05 0.25		0.35	0.62				
Total	31	79.86	24.93	20.21	7.87				

** Significant at 1%, * Significant at 5%

Chacko et alInt. J. Pure App. Biosci. 6 (5): 631-636 (2018)ISSN: 2320 - 7051Table 4. Estimates of environmental indices (I_i) for each character of hedge lucerne under different locations

Sl. No.	Character	Vellayani	Kottarakkara	Thrissur	Ambalavayal
1.	Green fodder yield	2.36	-0.66	-3.68	1.95
2.	Dry matter production	2.22	-0.21	-2.91	0.91
3.	Crude protein	1.34	-0.03	-1.81	0.49
4.	Crude fibre	1.26	-0.10	-1.70	0.58

Table 5. Mean performance and stability parameters for yield and quality traits in hedge lucern	e over four
locations	

Genotype	Green	1 fodder	yield	Dry ma	tter prod	luction	Cr	ude prote	in	С	rude fib	re
	Mean	bi	S ² _{di}	Mean	bi	S ² _{di}	Mean	bi	S ² _{di}	Mean	bi	S ² _{di}
T_1	112.35	1.12	-0.62	39.93	0.97	0.09	21.38	1.42	0.02	23.35	0.97	0.098
T ₂	101.28	1.34	-0.30	32.62	0.99	0.98^*	15.51	0.92	0.29	22.71	1.26	0.004
T ₃	90.45	2.38	-2.55	28.89	1.50	1.13*	14.59	1.21	-0.08	26.83	1.41	-0.139
T_4	100.67	1.74	0.001	37.59	0.94	1.04^{*}	13.12	0.97	0.01	23.59	0.45	-0.143
T ₅	98.75	- 1.45	9.20	31.37	0.70	0.71*	13.91	0.69	0.02	28.21	0.96	0.054
T_6	110.48	1.26	-2.54	40.62	1.34	0.47	20.26	0.89	-0.01	24.06	0.95	-0.116
T_7	109.02	0.07	1.15	40.32	0.27	3.95**	23.48	0.95	0.32	27.44	1.09	-0.027
T ₈	115.42	1.52	-1.61	40.04	1.25	0.49	24.39	0.91	-0.06	29.95	0.89	-0.145
Grand mean	104.93			36.42			18.34			25.77		

** Significant at 1%, * Significant at 5%

CONCLUSION

The genotype T_1 (IC 345276) was stable over all locations for the characters green fodder yield, dry matter production and crude fibre. The genotype T_4 (IC 261839) and genotype T_7 (TNDV 1) was stable for the character crude protein across the locations.

The genotypes T_2 (IC 343710) and T_8 (Thumburmuzhi local) were stable genotypes for favourable environment. The genotype T_2 (IC 343710) showed stable performance for the characters green fodder yield and crude fibre. The genotype T_8 (Thumburmuzhi local) was stable in favourable environment for green fodder yield and dry matter production. The genotype T_5 (IC 90934) was found to be stable for the character crude fibre in unfavourable environments.

The present study revealed that the genotypes T_1 (IC 345276), T_4 (IC 261839), T_6 (IC 421199) and T_7 (TNDV 1) were stable over the four different locations *viz.*, College of Agriculture, Vellayani, College of

Horticulture, Thrissur, Krishi Vigyan Kendra, and Regional Agricultural Kottarakkara Research Station, Ambalavayal, Wayanad. The genotypes T_2 (IC 343710) and T_8 (Thumburmuzhi local) showed stable performance under favourable environments viz., College of Agriculture, Vellayani and Regional Agricultural Research Station, Ambalavayal, Wayanad, while the genotype T_5 (IC 90934) was suitable for unfavourable environment. The superior genotypes identified in the present study can be used for further breeding programme.

REFERENCES

- Bikash, A., Yadav, I. S., and Arya, R. K., Evaluation of Hybrids for dry fodder yield stability in pearl millet. *Forage Res.* **39(1)**: 16-19 (2013).
- 2. Deepthi, V. L., Kalamani, A., and Manivannan, N., Genetic divergence and association analysis in Hedge lucerne

4. Johri, C. B., Bansal, S. K., and Rai, G. S., Desmanthus virgatus as feed for goats. Indian J. Agric. Sci. 57(11): 1237-1238 (1987).

J. Plant Breed. 4(3): 1261-1264 (2013).

G., Genotype x environment interactions

and stability of soybean for grain yield and

3. Gurmu, F., Mohammed, H., and Alemaw,

- 5. Mehraj, U., Abidi, I., Ahmad, M., Wani, B.A., Mir, S.D., and Dar, Z.A., Genotype x environment interaction for forage yield and its components in oats (Avena sativa L.). Electr. J. Plant Breed. 8(1): 157-162 (2017).
- 6. Nanavati, J.I., Stability analysis and G x E interactions for green fodder yield in forage maize (Zea mays L.). Forage Res. **41(4):** 203-207 (2016).
- 7. Palathingal, V.F., G x E interaction in the F₆ generation of wide crosses of rice (Orvza sativa L.). M.Sc. (Ag) thesis, Kerala Agricultural University, Thrissur, 101p (2003).

- 8. Patil, S.S., Desai, D.T., Patil, P.P., and Patel, S.R., Genotype x environment interaction for fruit yield and componenet characters on okra (Abelmoschus esculentus (L.) Moench). Electr. J. Plant Breed. 8(3): 787-791 (2017).
- 9. Peterson, C.J., Graybosch, R.A., Baenziger, P.S., and Grombacher, A.W., Genotype and environment effects on quality characteristics of hard red winter wheat. Crop Sci. 32: 98-103 (1992).
- 10. Preeti., Panwar, I.S., and Arya, R.K., Effects of changing environment on wheat dry matter yield. Forage Res. 42(1): 56-61 2016.
- 11. Saeed, M., Francis, C.A., Rajewski, J.F., and Maranville, J.W.,Genotype х environment interaction and stability analysis of protein and oil in grain sorghum. Crop Sci. 27(2): 159-171 (1985).
- 12. Shi, C., Zhu, J., Yang, X., Yu, Y., and Wu, J., Genetic analysis for protein content in indica rice. Euphytica 107: 135-140 (1999).

Chacko et al

(Desmanthus virgatus (L.) Willd). Electr.

87-99 (2009).